Copied to
clipboard

G = C23.16D6order 96 = 25·3

1st non-split extension by C23 of D6 acting via D6/S3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.16D6, (C2×C4).26D6, Dic3⋊C47C2, (C4×Dic3)⋊9C2, (C2×Dic3)⋊3C4, C22⋊C4.3S3, C6.5(C22×C4), C22.6(C4×S3), C32(C42⋊C2), C6.20(C4○D4), (C2×C6).18C23, Dic3(C22⋊C4), Dic3.8(C2×C4), C2.1(D42S3), (C2×C12).50C22, C6.D4.1C2, (C22×C6).7C22, C22.12(C22×S3), (C22×Dic3).2C2, (C2×Dic3).46C22, C2.7(S3×C2×C4), (C2×C6).4(C2×C4), (C3×C22⋊C4).3C2, SmallGroup(96,84)

Series: Derived Chief Lower central Upper central

C1C6 — C23.16D6
C1C3C6C2×C6C2×Dic3C22×Dic3 — C23.16D6
C3C6 — C23.16D6
C1C22C22⋊C4

Generators and relations for C23.16D6
 G = < a,b,c,d,e | a2=b2=c2=1, d6=b, e2=cb=bc, ab=ba, dad-1=eae-1=ac=ca, bd=db, be=eb, cd=dc, ce=ec, ede-1=d5 >

Subgroups: 138 in 76 conjugacy classes, 41 normal (15 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C6, C6, C6, C2×C4, C2×C4, C23, Dic3, Dic3, C12, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×Dic3, C2×Dic3, C2×C12, C22×C6, C42⋊C2, C4×Dic3, Dic3⋊C4, C6.D4, C3×C22⋊C4, C22×Dic3, C23.16D6
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D6, C22×C4, C4○D4, C4×S3, C22×S3, C42⋊C2, S3×C2×C4, D42S3, C23.16D6

Character table of C23.16D6

 class 12A2B2C2D2E34A4B4C4D4E4F4G4H4I4J4K4L4M4N6A6B6C6D6E12A12B12C12D
 size 111122222223333666666222444444
ρ1111111111111111111111111111111    trivial
ρ21111-1-1111-1-11111-11-1-1-11111-1-111-1-1    linear of order 2
ρ31111-1-1111-1-1-1-1-1-11-1111-1111-1-111-1-1    linear of order 2
ρ411111111111-1-1-1-1-1-1-1-1-1-1111111111    linear of order 2
ρ51111-1-11-1-11111111-1-1-11-1111-1-1-1-111    linear of order 2
ρ61111111-1-1-1-11111-1-111-1-111111-1-1-1-1    linear of order 2
ρ71111111-1-1-1-1-1-1-1-111-1-11111111-1-1-1-1    linear of order 2
ρ81111-1-11-1-111-1-1-1-1-1111-11111-1-1-1-111    linear of order 2
ρ911-1-1-111i-ii-i-1-111i-i1-1-ii-1-111-1i-i-ii    linear of order 4
ρ1011-1-11-11i-i-ii-1-111-i-i-11ii-1-11-11i-ii-i    linear of order 4
ρ1111-1-11-11i-i-ii11-1-1ii1-1-i-i-1-11-11i-ii-i    linear of order 4
ρ1211-1-1-111i-ii-i11-1-1-ii-11i-i-1-111-1i-i-ii    linear of order 4
ρ1311-1-11-11-iii-i-1-111ii-11-i-i-1-11-11-ii-ii    linear of order 4
ρ1411-1-1-111-ii-ii-1-111-ii1-1i-i-1-111-1-iii-i    linear of order 4
ρ1511-1-1-111-ii-ii11-1-1i-i-11-ii-1-111-1-iii-i    linear of order 4
ρ1611-1-11-11-iii-i11-1-1-i-i1-1ii-1-11-11-ii-ii    linear of order 4
ρ17222222-1-2-2-2-20000000000-1-1-1-1-11111    orthogonal lifted from D6
ρ18222222-122220000000000-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ192222-2-2-1-2-2220000000000-1-1-11111-1-1    orthogonal lifted from D6
ρ202222-2-2-122-2-20000000000-1-1-111-1-111    orthogonal lifted from D6
ρ2122-2-2-22-12i-2i2i-2i000000000011-1-11-iii-i    complex lifted from C4×S3
ρ2222-2-2-22-1-2i2i-2i2i000000000011-1-11i-i-ii    complex lifted from C4×S3
ρ232-2-220020000-2i2i2i-2i0000002-2-2000000    complex lifted from C4○D4
ρ242-22-200200002i-2i2i-2i000000-22-2000000    complex lifted from C4○D4
ρ2522-2-22-2-12i-2i-2i2i000000000011-11-1-ii-ii    complex lifted from C4×S3
ρ2622-2-22-2-1-2i2i2i-2i000000000011-11-1i-ii-i    complex lifted from C4×S3
ρ272-22-20020000-2i2i-2i2i000000-22-2000000    complex lifted from C4○D4
ρ282-2-2200200002i-2i-2i2i0000002-2-2000000    complex lifted from C4○D4
ρ294-4-4400-200000000000000-222000000    symplectic lifted from D42S3, Schur index 2
ρ304-44-400-2000000000000002-22000000    symplectic lifted from D42S3, Schur index 2

Smallest permutation representation of C23.16D6
On 48 points
Generators in S48
(2 31)(4 33)(6 35)(8 25)(10 27)(12 29)(14 43)(16 45)(18 47)(20 37)(22 39)(24 41)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 30)(2 31)(3 32)(4 33)(5 34)(6 35)(7 36)(8 25)(9 26)(10 27)(11 28)(12 29)(13 42)(14 43)(15 44)(16 45)(17 46)(18 47)(19 48)(20 37)(21 38)(22 39)(23 40)(24 41)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 24 36 47)(2 17 25 40)(3 22 26 45)(4 15 27 38)(5 20 28 43)(6 13 29 48)(7 18 30 41)(8 23 31 46)(9 16 32 39)(10 21 33 44)(11 14 34 37)(12 19 35 42)

G:=sub<Sym(48)| (2,31)(4,33)(6,35)(8,25)(10,27)(12,29)(14,43)(16,45)(18,47)(20,37)(22,39)(24,41), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,30)(2,31)(3,32)(4,33)(5,34)(6,35)(7,36)(8,25)(9,26)(10,27)(11,28)(12,29)(13,42)(14,43)(15,44)(16,45)(17,46)(18,47)(19,48)(20,37)(21,38)(22,39)(23,40)(24,41), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,24,36,47)(2,17,25,40)(3,22,26,45)(4,15,27,38)(5,20,28,43)(6,13,29,48)(7,18,30,41)(8,23,31,46)(9,16,32,39)(10,21,33,44)(11,14,34,37)(12,19,35,42)>;

G:=Group( (2,31)(4,33)(6,35)(8,25)(10,27)(12,29)(14,43)(16,45)(18,47)(20,37)(22,39)(24,41), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,30)(2,31)(3,32)(4,33)(5,34)(6,35)(7,36)(8,25)(9,26)(10,27)(11,28)(12,29)(13,42)(14,43)(15,44)(16,45)(17,46)(18,47)(19,48)(20,37)(21,38)(22,39)(23,40)(24,41), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,24,36,47)(2,17,25,40)(3,22,26,45)(4,15,27,38)(5,20,28,43)(6,13,29,48)(7,18,30,41)(8,23,31,46)(9,16,32,39)(10,21,33,44)(11,14,34,37)(12,19,35,42) );

G=PermutationGroup([[(2,31),(4,33),(6,35),(8,25),(10,27),(12,29),(14,43),(16,45),(18,47),(20,37),(22,39),(24,41)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,30),(2,31),(3,32),(4,33),(5,34),(6,35),(7,36),(8,25),(9,26),(10,27),(11,28),(12,29),(13,42),(14,43),(15,44),(16,45),(17,46),(18,47),(19,48),(20,37),(21,38),(22,39),(23,40),(24,41)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,24,36,47),(2,17,25,40),(3,22,26,45),(4,15,27,38),(5,20,28,43),(6,13,29,48),(7,18,30,41),(8,23,31,46),(9,16,32,39),(10,21,33,44),(11,14,34,37),(12,19,35,42)]])

C23.16D6 is a maximal subgroup of
C23⋊C45S3  C24.35D6  C24.42D6  C42.87D6  S3×C42⋊C2  C42.96D6  C4×D42S3  C42.105D6  C42.108D6  C4218D6  C24.67D6  C24.43D6  C24.45D6  C4⋊C4.178D6  C6.342+ 1+4  C6.442+ 1+4  C6.452+ 1+4  (Q8×Dic3)⋊C2  C6.752- 1+4  C6.532+ 1+4  C6.772- 1+4  C6.792- 1+4  C4⋊C4.197D6  C6.802- 1+4  C4⋊C428D6  C6.642+ 1+4  C6.652+ 1+4  C42.137D6  C42.138D6  C42.139D6  C42.234D6  C42.159D6  C42.160D6  C42.189D6  C42.162D6  C23.16D18  C62.47C23  C62.48C23  C62.97C23  C62.99C23  C62.221C23  (D5×Dic3)⋊C4  D10.19(C4×S3)  C23.26(S3×D5)  C23.48(S3×D5)  C23.15D30  C22⋊F5.S3
C23.16D6 is a maximal quotient of
Dic3.5C42  Dic3⋊C42  C3⋊(C428C4)  C3⋊(C425C4)  C2.(C4×D12)  C2.(C4×Dic6)  Dic3.5M4(2)  Dic3.M4(2)  C24⋊C4⋊C2  Dic3×C22⋊C4  C24.55D6  C24.56D6  C24.14D6  C24.15D6  C23.16D18  C62.47C23  C62.48C23  C62.97C23  C62.99C23  C62.221C23  (D5×Dic3)⋊C4  D10.19(C4×S3)  C23.26(S3×D5)  C23.48(S3×D5)  C23.15D30  C22⋊F5.S3

Matrix representation of C23.16D6 in GL6(𝔽13)

100000
12120000
001000
0051200
000010
000001
,
100000
010000
0012000
0001200
000010
000001
,
1200000
0120000
0012000
0001200
000010
000001
,
12110000
010000
0051100
000800
000001
0000121
,
830000
050000
0012300
000100
0000121
000001

G:=sub<GL(6,GF(13))| [1,12,0,0,0,0,0,12,0,0,0,0,0,0,1,5,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,11,1,0,0,0,0,0,0,5,0,0,0,0,0,11,8,0,0,0,0,0,0,0,12,0,0,0,0,1,1],[8,0,0,0,0,0,3,5,0,0,0,0,0,0,12,0,0,0,0,0,3,1,0,0,0,0,0,0,12,0,0,0,0,0,1,1] >;

C23.16D6 in GAP, Magma, Sage, TeX

C_2^3._{16}D_6
% in TeX

G:=Group("C2^3.16D6");
// GroupNames label

G:=SmallGroup(96,84);
// by ID

G=gap.SmallGroup(96,84);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-3,96,188,50,2309]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^6=b,e^2=c*b=b*c,a*b=b*a,d*a*d^-1=e*a*e^-1=a*c=c*a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^5>;
// generators/relations

Export

Character table of C23.16D6 in TeX

׿
×
𝔽