metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23.16D6, (C2×C4).26D6, Dic3⋊C4⋊7C2, (C4×Dic3)⋊9C2, (C2×Dic3)⋊3C4, C22⋊C4.3S3, C6.5(C22×C4), C22.6(C4×S3), C3⋊2(C42⋊C2), C6.20(C4○D4), (C2×C6).18C23, Dic3○(C22⋊C4), Dic3.8(C2×C4), C2.1(D4⋊2S3), (C2×C12).50C22, C6.D4.1C2, (C22×C6).7C22, C22.12(C22×S3), (C22×Dic3).2C2, (C2×Dic3).46C22, C2.7(S3×C2×C4), (C2×C6).4(C2×C4), (C3×C22⋊C4).3C2, SmallGroup(96,84)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C23.16D6
G = < a,b,c,d,e | a2=b2=c2=1, d6=b, e2=cb=bc, ab=ba, dad-1=eae-1=ac=ca, bd=db, be=eb, cd=dc, ce=ec, ede-1=d5 >
Subgroups: 138 in 76 conjugacy classes, 41 normal (15 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C6, C6, C6, C2×C4, C2×C4, C23, Dic3, Dic3, C12, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×Dic3, C2×Dic3, C2×C12, C22×C6, C42⋊C2, C4×Dic3, Dic3⋊C4, C6.D4, C3×C22⋊C4, C22×Dic3, C23.16D6
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D6, C22×C4, C4○D4, C4×S3, C22×S3, C42⋊C2, S3×C2×C4, D4⋊2S3, C23.16D6
Character table of C23.16D6
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 6A | 6B | 6C | 6D | 6E | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 6 | 6 | 6 | 6 | 6 | 6 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | i | -i | i | -i | -1 | -1 | 1 | 1 | i | -i | 1 | -1 | -i | i | -1 | -1 | 1 | 1 | -1 | i | -i | -i | i | linear of order 4 |
ρ10 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | i | -i | -i | i | -1 | -1 | 1 | 1 | -i | -i | -1 | 1 | i | i | -1 | -1 | 1 | -1 | 1 | i | -i | i | -i | linear of order 4 |
ρ11 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | i | -i | -i | i | 1 | 1 | -1 | -1 | i | i | 1 | -1 | -i | -i | -1 | -1 | 1 | -1 | 1 | i | -i | i | -i | linear of order 4 |
ρ12 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | i | -i | i | -i | 1 | 1 | -1 | -1 | -i | i | -1 | 1 | i | -i | -1 | -1 | 1 | 1 | -1 | i | -i | -i | i | linear of order 4 |
ρ13 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -i | i | i | -i | -1 | -1 | 1 | 1 | i | i | -1 | 1 | -i | -i | -1 | -1 | 1 | -1 | 1 | -i | i | -i | i | linear of order 4 |
ρ14 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -i | i | -i | i | -1 | -1 | 1 | 1 | -i | i | 1 | -1 | i | -i | -1 | -1 | 1 | 1 | -1 | -i | i | i | -i | linear of order 4 |
ρ15 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -i | i | -i | i | 1 | 1 | -1 | -1 | i | -i | -1 | 1 | -i | i | -1 | -1 | 1 | 1 | -1 | -i | i | i | -i | linear of order 4 |
ρ16 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -i | i | i | -i | 1 | 1 | -1 | -1 | -i | -i | 1 | -1 | i | i | -1 | -1 | 1 | -1 | 1 | -i | i | -i | i | linear of order 4 |
ρ17 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ18 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ19 | 2 | 2 | 2 | 2 | -2 | -2 | -1 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ20 | 2 | 2 | 2 | 2 | -2 | -2 | -1 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ21 | 2 | 2 | -2 | -2 | -2 | 2 | -1 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | 1 | -i | i | i | -i | complex lifted from C4×S3 |
ρ22 | 2 | 2 | -2 | -2 | -2 | 2 | -1 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | 1 | i | -i | -i | i | complex lifted from C4×S3 |
ρ23 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ24 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ25 | 2 | 2 | -2 | -2 | 2 | -2 | -1 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 1 | -1 | -i | i | -i | i | complex lifted from C4×S3 |
ρ26 | 2 | 2 | -2 | -2 | 2 | -2 | -1 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 1 | -1 | i | -i | i | -i | complex lifted from C4×S3 |
ρ27 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ28 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ29 | 4 | -4 | -4 | 4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4⋊2S3, Schur index 2 |
ρ30 | 4 | -4 | 4 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4⋊2S3, Schur index 2 |
(2 31)(4 33)(6 35)(8 25)(10 27)(12 29)(14 43)(16 45)(18 47)(20 37)(22 39)(24 41)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 30)(2 31)(3 32)(4 33)(5 34)(6 35)(7 36)(8 25)(9 26)(10 27)(11 28)(12 29)(13 42)(14 43)(15 44)(16 45)(17 46)(18 47)(19 48)(20 37)(21 38)(22 39)(23 40)(24 41)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 24 36 47)(2 17 25 40)(3 22 26 45)(4 15 27 38)(5 20 28 43)(6 13 29 48)(7 18 30 41)(8 23 31 46)(9 16 32 39)(10 21 33 44)(11 14 34 37)(12 19 35 42)
G:=sub<Sym(48)| (2,31)(4,33)(6,35)(8,25)(10,27)(12,29)(14,43)(16,45)(18,47)(20,37)(22,39)(24,41), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,30)(2,31)(3,32)(4,33)(5,34)(6,35)(7,36)(8,25)(9,26)(10,27)(11,28)(12,29)(13,42)(14,43)(15,44)(16,45)(17,46)(18,47)(19,48)(20,37)(21,38)(22,39)(23,40)(24,41), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,24,36,47)(2,17,25,40)(3,22,26,45)(4,15,27,38)(5,20,28,43)(6,13,29,48)(7,18,30,41)(8,23,31,46)(9,16,32,39)(10,21,33,44)(11,14,34,37)(12,19,35,42)>;
G:=Group( (2,31)(4,33)(6,35)(8,25)(10,27)(12,29)(14,43)(16,45)(18,47)(20,37)(22,39)(24,41), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,30)(2,31)(3,32)(4,33)(5,34)(6,35)(7,36)(8,25)(9,26)(10,27)(11,28)(12,29)(13,42)(14,43)(15,44)(16,45)(17,46)(18,47)(19,48)(20,37)(21,38)(22,39)(23,40)(24,41), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,24,36,47)(2,17,25,40)(3,22,26,45)(4,15,27,38)(5,20,28,43)(6,13,29,48)(7,18,30,41)(8,23,31,46)(9,16,32,39)(10,21,33,44)(11,14,34,37)(12,19,35,42) );
G=PermutationGroup([[(2,31),(4,33),(6,35),(8,25),(10,27),(12,29),(14,43),(16,45),(18,47),(20,37),(22,39),(24,41)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,30),(2,31),(3,32),(4,33),(5,34),(6,35),(7,36),(8,25),(9,26),(10,27),(11,28),(12,29),(13,42),(14,43),(15,44),(16,45),(17,46),(18,47),(19,48),(20,37),(21,38),(22,39),(23,40),(24,41)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,24,36,47),(2,17,25,40),(3,22,26,45),(4,15,27,38),(5,20,28,43),(6,13,29,48),(7,18,30,41),(8,23,31,46),(9,16,32,39),(10,21,33,44),(11,14,34,37),(12,19,35,42)]])
C23.16D6 is a maximal subgroup of
C23⋊C4⋊5S3 C24.35D6 C24.42D6 C42.87D6 S3×C42⋊C2 C42.96D6 C4×D4⋊2S3 C42.105D6 C42.108D6 C42⋊18D6 C24.67D6 C24.43D6 C24.45D6 C4⋊C4.178D6 C6.342+ 1+4 C6.442+ 1+4 C6.452+ 1+4 (Q8×Dic3)⋊C2 C6.752- 1+4 C6.532+ 1+4 C6.772- 1+4 C6.792- 1+4 C4⋊C4.197D6 C6.802- 1+4 C4⋊C4⋊28D6 C6.642+ 1+4 C6.652+ 1+4 C42.137D6 C42.138D6 C42.139D6 C42.234D6 C42.159D6 C42.160D6 C42.189D6 C42.162D6 C23.16D18 C62.47C23 C62.48C23 C62.97C23 C62.99C23 C62.221C23 (D5×Dic3)⋊C4 D10.19(C4×S3) C23.26(S3×D5) C23.48(S3×D5) C23.15D30 C22⋊F5.S3
C23.16D6 is a maximal quotient of
Dic3.5C42 Dic3⋊C42 C3⋊(C42⋊8C4) C3⋊(C42⋊5C4) C2.(C4×D12) C2.(C4×Dic6) Dic3.5M4(2) Dic3.M4(2) C24⋊C4⋊C2 Dic3×C22⋊C4 C24.55D6 C24.56D6 C24.14D6 C24.15D6 C23.16D18 C62.47C23 C62.48C23 C62.97C23 C62.99C23 C62.221C23 (D5×Dic3)⋊C4 D10.19(C4×S3) C23.26(S3×D5) C23.48(S3×D5) C23.15D30 C22⋊F5.S3
Matrix representation of C23.16D6 ►in GL6(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 |
12 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 5 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 11 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 11 | 0 | 0 |
0 | 0 | 0 | 8 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 12 | 1 |
8 | 3 | 0 | 0 | 0 | 0 |
0 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 3 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(13))| [1,12,0,0,0,0,0,12,0,0,0,0,0,0,1,5,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,11,1,0,0,0,0,0,0,5,0,0,0,0,0,11,8,0,0,0,0,0,0,0,12,0,0,0,0,1,1],[8,0,0,0,0,0,3,5,0,0,0,0,0,0,12,0,0,0,0,0,3,1,0,0,0,0,0,0,12,0,0,0,0,0,1,1] >;
C23.16D6 in GAP, Magma, Sage, TeX
C_2^3._{16}D_6
% in TeX
G:=Group("C2^3.16D6");
// GroupNames label
G:=SmallGroup(96,84);
// by ID
G=gap.SmallGroup(96,84);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,96,188,50,2309]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^6=b,e^2=c*b=b*c,a*b=b*a,d*a*d^-1=e*a*e^-1=a*c=c*a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^5>;
// generators/relations
Export